Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(1): 151-158, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34788009

RESUMO

Polymer-carbon nanocomposite sensor is a promising molecular sensing device for electronic nose (e-nose) due to its printability, variety of polymer materials, and low operation temperature; however, the lack of stability in an air environment has been an inevitable issue. Here, we demonstrate a design concept for realizing long-term stability in a polyethylene glycol (PEG)-carbon black (CB) nanocomposite sensor by understanding the underlying phenomena that cause sensor degradation. Comparison of the sensing properties and infrared spectroscopy on the same device revealed that the oxidation-induced consumption of PEG is a crucial factor for the sensor degradation. According to the mechanism, we introduced an antioxidizing agent (i.e., ascorbic acid) into the PEG-CB nanocomposite sensor to suppress the PEG oxidation and successfully demonstrated the long-term stability of sensing properties under an air environment for 30 days, which had been difficult in conventional polymer-carbon nanocomposite sensors.


Assuntos
Nanocompostos , Polietilenoglicóis , Carbono/química , Nanocompostos/química , Polietilenoglicóis/química , Polímeros/química , Fuligem
2.
Anal Chem ; 89(19): 10303-10310, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28876053

RESUMO

The O2 consumption rate of embryos has been attracting much attention as a key indicator of cell metabolisms and development. In this study, we propose an on-chip device that enables the accurate, easy, and noninvasive measurement of O2 consumption rates of single embryos. Pt electrodes and micropits for embryo settlement were fabricated on Si chips via microfabrication techniques. The configuration of the device enables the detection of O2 concentration profiles surrounding the embryos by settling embryos into the pits with a mouth pipet. Moreover, as the detection is based on an electrochemical method, the influence of O2 consumption on the electrodes was also considered. By using a simulator (COMSOL Multiphysics), we estimated the O2 concentration profiles in the device with and without the effects of the electrodes. Based on the simulation results, we developed a normalization process to calculate the precise O2 consumption rate of the sample. Finally, using both the measurement system and the algorithm for the analysis, the respiratory activities of mouse embryos were successfully measured.


Assuntos
Técnicas Eletroquímicas/métodos , Embrião de Mamíferos/metabolismo , Oxigênio/análise , Algoritmos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Feminino , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...